Skip to main content

接入 Prometheus

Prometheus(普罗米修斯)是一个最初在 SoundCloud 上构建的监控系统。 自 2012 年成为社区开源项目,拥有非常活跃的开发人员和用户社区。为强调开源及独立维护,Prometheus 于 2016 年加入云原生云计算基金会(CNCF),成为继 Kubernetes 之后的第二个托管项目。

Grafana 是一个开源的度量分析与可视化套件。纯 Javascript 开发的前端工具,通过访问库(如 InfluxDB),展示自定义报表、显示图表等。Grafana 支持许多不同的数据源。每个数据源都有一个特定的查询编辑器,该编辑器定制的特性和功能是公开的特定数据来源。而 Prometheus 正好是其支持的数据源之一。

本篇介绍了 Midway 如何接入 Grafana + Prometheus。

接入效果如下:

安装组件#

首先安装 Midway 提供的指标监控组件:

$ npm install @midwayjs/prometheus -S

configuration.ts  中,引入这个组件:

// src/configuration.tsimport { Configuration } from '@midwayjs/decorator';import * as prometheus from '@midwayjs/prometheus'; // 导入模块import { join } from 'path';
@Configuration({  imports: [prometheus], // 引入模块  importConfigs: [join(__dirname, 'config')],})export class AutoConfiguration {}

启动我们的应用,此时访问的时候多了一个 ${host}:${port}/metrics  。

info

Prometheus 基于 HTTP 获取监控数据,请加载 web/koa/express 任一框架,并使用多框架模式启动。

访问接口,返回如下,里面的内容是当前的指标。

其他配置#

指标组件也提供了相关的配置,方便开发者进行配置。

可以在 config.default.ts  中,修改 prometheus 的配置。

import { DefaultConfig } from '@midwayjs/prometheus';
export const prometheus: DefaultConfig = {  labels: {    APP_NAME: 'demo_project',  },};

更多的配置,我们可以查看 DefaultConfig  这个定义进行配置。

通过配置,我们例如可以归类哪些 node 是同一个应用,因为我们部署的时候,node 程序是分布式的。例如上面我们加了 APP_NAME,用来区分不同的应用,这样在监控指标中,我们可以区分不同的应用。

数据采集#

我们前面在 Midway 中引入的组件主要是在 Node 中加了指标模块。接下来我们需要让 Prometheus 来采集我们的指标数据。

如果开发者所在部门已经有 Prometheus+grafana 了,则只需将应用的指标地址上报给 PE 或者通过接口上报即可。此处我们假设大家没有 Prometheus+grafana,然后按照下面描述进行操作。

搭建 Prometheus#

此处我们通过 docker-compose 来搭建 Prometheus, docker-compose.yml  文件如下:

version: '2.2'services:  tapi:    logging:      driver: 'json-file'      options:        max-size: '50m'    image: prom/prometheus    restart: always    volumes:      - ./prometheus_data:/prometheus_data:rw      - ./prometheus.yml:/etc/prometheus/prometheus.yml      - ./targets.json:/etc/prometheus/targets.json    command:      - '--storage.tsdb.path=/prometheus_data'      - '--config.file=/etc/prometheus/prometheus.yml'      - '--storage.tsdb.retention=10d'      - '--web.enable-lifecycle'    ports:      - '9090:9090'

prometheus.yml   文件如下:

global:  scrape_interval: 15s # Set the scrape interval to every 15 seconds. Default is every 1 minute.  evaluation_interval: 15s # Evaluate rules every 15 seconds. The default is every 1 minute.scrape_configs:  - job_name: 'node'    file_sd_configs:      - refresh_interval: 1m        files:          - '/etc/prometheus/targets.json'  - job_name: 'prometheus'    static_configs:      - targets: ['localhost:9090']

然后采集的 targets.json   如下:下面文件里面 ${ip}   替换为 Node.js 应用所在服务器的 ip 地址。

[  {    "targets": ["${ip}:7001"],    "labels": {      "env": "prod",      "job": "api"    }  }]

然后我们启动 docker-compose.yml   文件,

$ docker-compose up

至此,Prometheus 已经会去拉取我们 Node 应用程序的指标数据了。

如果想要更新 target 怎么做: 修改了这个 targets.json 文件后,通过 prometheus 的 reload 方法进行热加载。 方法如下:

curl -X POST http://${prometheus的ip}:9090/-/reload

然后我们可以查看 prometheus 的页面也可以确认是否生效,界面地址:

http://${prometheus的ip}:9090/classic/targets

接下来就是如何展示这些采集到的数据了。

数据展示#

我们可以借助 Grafana 来展示我们的数据。

此处我们简单通过 Docker 来搭建一下 Grafana:

$ docker run -d --name=grafana -p 3000:3000 grafana/grafana

然后我们访问 127.0.0.1:3000,默认账号密码:admin:admin。 然后访问后如下效果:

然后我们让 Grafana 接入我们的 Prometheus 数据源:

然后我们点击 Grafana 添加图表:

这边 ID 选择 14403,然后点击 load,然后点击下一步,然后点击 import 后,就能看到我们刚刚接入的效果了。

这样开发者可以运维自己的 Node 程序了,例如,是否最近引入了一个 NPM 包导致了什么内存泄漏的情况,是否最近有应用重启的情况了。

当然还能支持其他的自定义操作。 ​

Socket-io 场景#

使用方法:

npm install @midwayjs/prometheus-socket-io -S

使用方法:

import { Configuration } from '@midwayjs/decorator';import { join } from 'path';import * as prometheus from '@midwayjs/prometheus';import * as prometheusSocketIo from '@midwayjs/prometheus-socket-io';
@Configuration({  imports: [prometheus, prometheusSocketIo],  importConfigs: [join(__dirname, './config')],  conflictCheck: true,})export class ContainerLifeCycle {}

然后在/metrics 这边就能看到 socket-io 的数据了。

一共新增 8 个指标。 后续会提供 Grafana 的模版 ID 给大家使用。 ​

功能介绍#

  • 根据 appName 进行分类
  • 查看不同 path 的 qps 情况
  • 查看不同 status 的分布情况
  • 查询不同 path 的 rt 情况
  • 进程的 CPU 使用情况
  • 进程的内存使用情况
  • 堆栈情况
  • Event Loop